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Abstract

Latent Dirichlet allocation (LDA) is a Bayesian network theas recently gained
much popularity in applications ranging from document niimdeto computer
vision. Due to the large scale nature of these applicaticunsent inference pro-
cedures like variational Bayes and Gibbs sampling have fmerd lacking. In
this paper we propose the collapsed variational Bayesianence algorithm for
LDA, and show that it is computationally efficient, easy tgiement and signifi-
cantly more accurate than standard variational Bayesfanence for LDA.

1 Introduction

Bayesian networks with discrete random variables form & general and useful class of proba-
bilistic models. In a Bayesian setting it is convenient td@m these models with Dirichlet priors
over the parameters as they are conjugate to the multinalisizibutions over the discrete random
variables [1]. This choice has important computationakadages and allows for easy inference in
such models.

A class of Bayesian networks that has gained significant nmtume recently is latent Dirichlet
allocation (LDA) [2], otherwise known as multinomial PCA][3t has found important applications
in both text modeling [4, 5] and computer vision [6]. TraigibDA on a large corpus of several
million documents can be a challenge and crucially dependmcefficient and accurate inference
procedure. A host of inference algorithms have been prahoaaging from variational Bayesian
(VB) inference [2], expectation propagation (EP) [7] tolapked Gibbs sampling [5].

Perhaps surprisingly, the collapsed Gibbs sampler prabiosg] seem to be the preferred choice

in many of these large scale applications. In [8] it is obedrthat EP is not efficient enough to

be practical while VB suffers from a large bias. Howeverjaygded Gibbs sampling also has its
own problems: one needs to assess convergence of the Mankav and to have some idea of

mixing times to estimate the number of samples to colled, tanidentify coherent topics across

multiple samples. In practice one often ignores these ssan€ collects as many samples as is
computationally feasible, while the question of topic itiézation is often sidestepped by using

just 1 sample. Hence there still seems to be a need for mooieeffi accurate and deterministic

inference procedures.

In this paper we will leverage the important insight that algi sampler that operates in a collapsed
space—where the parameters are marginalized out—mixek better than a Gibbs sampler that
samples parameters and latent topic variables simultaheotihis suggests that the parameters
and latent variables are intimately coupled. As we shaliis¢lee following, marginalizing out the
parameters induces new dependencies between the latatilear(which areonditionally inde-
pendent given the parameters), but these dependenciegrass Dut over many latent variables.
This implies that the dependency between any two latenalbkes is expected to be small. This is
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precisely the right setting for a mean field (i.e. fully fatted variational) approximation: a par-
ticular variable interacts with the remaining variablesyathrough summary statistics called the
field, and the impact of any single variable on the field is \v@nall [9]. Note that this is not true
in the joint space of parameters and latent variables bedfustuations in parameters can have a
significant impact on latent variables. We thus conjecta the mean field assumptions are much
better satisfied in the collapsed space of latent variabks in the joint space of latent variables
and parameters. In this paper we leverage this insight asgbge a collapsed variational Bayesian
(CVB) inference algorithm.

In theory, the CVB algorithm requires the calculation ofwexpensive averages. However, the
averages only depend on sums of independent Bernoulliblesgand thus are very closely approx-
imated with Gaussian distributions (even for relativelyainsums). Making use of this approxi-
mation, the final algorithm is computationally efficientsgdao implement and significantly more
accurate than standard VB.

2 Approximate Inferencein Latent Dirichlet Allocation

LDA models each document as a mixture over topics. We asshere areK latent topics, each
being a multinomial distribution over a vocabulary of si#& For documeny, we first draw a
mixing proportiond; = {6,;} over K topics from a symmetric Dirichlet with parameter For
theith word in the document, a topig; is drawn with topick chosen with probability;;, then
word z;; is drawn from thez; ;th topic, withz;; taking on valuew with probability ¢x,,. Finally, a
symmetric Dirichlet prior with parametétis placed on the topic parameteis = { ¢, }. The full
joint distribution over all parameters and variables is:

p(X,Z,O,(ﬂOx,ﬁ H 1" K Hk 1 a 1+n_1k H 1_‘ VV)Hw 1¢ﬁ 141 ko (1)

wheren;i, = #{i : ;; = w, z;; = k}, and dot means the corresponding index is summed out:
Nkw = Zj Njkws andnjk. = Zw Tjkw-

Given the observed words = {z;;} the task of Bayesian inference is to compute the posterior
distribution over the latent topic indices= {z;; }, the mixing proportion® = {6;} and the topic
parameterg = {¢}. There are three current approaches, variational Baye} [R]Bexpectation
propagation [7] and collapsed Gibbs sampling [5]. We reviee/VB and collapsed Gibbs sam-
pling methods here as they are the most popular methods andtieate our new algorithm which
combines advantages of both.

2.1 Variational Bayes

Standard VB inference upper bounds the negative log mddgieihood — log p(x|«, 3) using the
variational free energy:

—logp(x|a, B) < F(i(z,0, 9)) = B[ logp(x, 2, ¢, 0la, B)] — H(i(z, 0, $)) )
]

with §(z, 8, ¢) an approximate posterick (¢(z, 0, ¢)) = Ez|—log{(z, 0, ¢)] the variational en-
tropy, andj(z, 8, ¢) assumed to be fully factorized:

i(2,0,¢) = Hq 23 |%i5) Hq Chty Hq 1| Bx) 3

q(2i5]7i;) is multinomial with parameter;; andg(6;|a;), G(¢x|Gx) are Dirichlet with parameters
& and3;, respectively. Optimizingt () with respect to the variational parameters gives us a set of
updates guaranteed to impra#€g) at each iteration and converges to a local minimum:

Ak =+, Fijk 4)
Brw = B+ 35 1(wij =w)iji ()
Yijk X exp (‘I’(&jk) U (Bray,) — V(X Bkw)) (6)



where¥ (y) = éﬂ%;(y) is the digamma function aridis the indicator function.

Although efficient and easily implemented, VB can potefyildad to very inaccurate results. No-
tice that the latent variablesand parameter8, ¢ can be strongly dependent in the true posterior
p(z, 0, ¢|x) through the cross terms in (1). This dependence is ignor&Bimhich assumes that
latent variables and parameters are independent instea@ résult, the VB upper bound on the
negative log marginal likelihood can be very loose, leadingaccurate estimates of the posterior.

2.2 Collapsad Gibbs Sampling

Standard Gibbs sampling, which iteratively samples latemiablesz and parameter@, ¢, can
potentially have slow convergence due again to strong dbperies between the parameters and
latent variables. Collapsed Gibbs sampling improves upibbh&sampling by marginalizing oét
and¢ instead, therefore dealing with them exactly. The margiisitibution overx andz is

_ ['(Ka) I'(a+n;k.) L(Wp) (B4 4w)
p(z’x|°"5)_1;[r(m+nj_)nk () l;lr(wmn.k.)nw T(5) ")

Given the current state of all but one variablg the conditional probability of;; is:

(a+ ) )(B+ g YW +n!)!

~in]‘
K —ij —1j =17\ —
Swoila+npl)(B 4057, YWB+ngi)
where the superscripiij means the corresponding variables or counts wjthandz;; excluded,

and the denominator is just a normalization. The conditidisdribution of z;; is multinomial with
simple to calculate probabilities, so the programming andgutational overhead is minimal.

p(zw = k|zﬁijaxaaaﬁ) = (8)

Collapsed Gibbs sampling has been obgerve_d to cqnvergtelyqu[ﬁ}. Notice from (8) thatz;;
depends on ™ only through the counts;,z?,n]j;w,n];]. In particular, the dependence of on

any particular other variablg ;. is very weak, especially for large datasets. As a result weebthe
convergence of collapsed Gibbs sampling to be fast [10]. é¥&w as with other MCMC samplers,
and unlike variational inference, it is often hard to diagm@onvergence, and a sufficiently large
number of samples may be required to reduce sampling noise.

The argument of rapid convergence of collapsed Gibbs samjgireminiscent of the argument for
when mean field algorithms can be expected to be accuratéliglcounts: ;’, n;7  n;” actas

fields through whickhe;; interacts with other variables. In particular, averagiothbsides of (8) by
p(z7¥|x, «, 3) gives us the Callen equations, a set of equations that thetisterior must satisfy:
(a+n ) (B+nd YW B+n,7)~t

k}I”
K —ij —ij =55\ _
Zk/zl(Oé+nj;§?.)(ﬁ+m%j)(Wﬁ+n.;§7) !

Since the latent variables are already weakly dependenadm ether, it is possible to replace (9)
by a set of mean field equations where latent variables areressindependent and still expect
these equations to be accurate. This is the idea behind tag®ed variational Bayesian inference
algorithm of the next section.

Pz = k1%, @, B) = Epigmss o) ©)

3 Collapsed Variational Bayesian I nference for L DA

We derive a new inference algorithm for LDA combining the aichages of both standard VB and
collapsed Gibbs sampling. It is a variational algorithm ethiinstead of assuming independence,
models the dependence of the parameters on the latent lesriatan exact fashion. On the other
hand we still assume that latent variables are mutuallygeddent. This is not an unreasonable
assumption to make since as we saw they are only weakly depend each other. We call this
algorithm collapsed variational Bayesian (CVB) inference

There are two ways to deal with the parameters in an exadbfadine first is to marginalize them
out of the joint distribution and to start from (7), the sedas to explicitly model the posterior of
0, ¢ givenz andx without any assumptions on its form. We will show that these methods



are equivalent. The only assumption we make in CVB is thatdtent variablez are mutually
independent, thus we approximate the posterior as:

i(2,0,) = §(0, plz) [ [ azi1%;) (10)
ij
whereg(z;;|%:;) is multinomial with parameter;;. The variational free energy becomes:
F(d(2)d(6, |2)) = Ega)qo.41 [~ logp(x, 2,0, $la, B)] — H(d(2)(6, ¢lz))
:Eé(z)[ G(0,¢|z) [_ logp(X7 707 ¢)|O{, 6)] - ( ( 7¢|Z))] - (Q(Z)) (11)

We minimize the variational free energy with respectjté, ¢|z) first, followed byg(z). Since
we do not restrict the form af(, ¢|z), the minimum is achieved at the true posteri(#, ¢|z) =
p(0, ¢|x, z, o, 3), and the variational free energy simplifies to:

Fli() & min F(a(z)i(0.9]2)) = Eyeo |- ogplxzlo. )] - H(i(z)  (12)

el

We see that CVB is equivalent to marginalizing éut) before approximating the posterior ower
As CVB makes a strictly weaker assumption on the variatipoaterior than standard VB, we have

F(i(z) < F(G(z) & doin F(q(2)d(0)a(e)) (13)

and thus CVB is a better approximation than standard VB.IFkinae derive the updates for the
variational parameterg;. Minimizing (12) with respect tgy, ;, we get

exp (Eé(zﬂij)[p(x’ zﬁij7 Zij = k|a7 ﬁ)])
Y1 exp (Eg(min) [p(x, 279, 245 = Ko, B)))
77+n)

(14)

Yigr = q(zi5 = k) =

Plugging in (7), expandmg)g ;01 log(n + 1) for positive reals) and positive integers
n, and cancelling terms appearmg both in the numerator andrdmator, we get

exp (E (z-i)[log(a+n )+1og(ﬁ+n”3 - log(Wﬁ+n”7)])

o 1exp(E<w>[1og<a+n;,z?>+1og<ﬁ+n”7 )~ log(W+n3)])

Vijk = (15)

3.1 Gaussian approximation for CVB Inference

For completeness, we describe how to compute each expectatim in (15) exactly in the ap-

pendix. This exact implementation of CVB is computatiopatio expensive to be practical, and
we propose instead to use a simple Gaussian approximatich wiorks very accurately and which
requires minimal computational costs.

In this section we describe the Gaussian approximationegppd E;[log(a + nm)] the other
two expectation terms are similarly computed. Assume that > 0. Notice thatn_'” =

> w2 1(zirj = k) is a sum of a large number independent Bernoulli variables; = k) each
with mean parametey, ;;, thus it can be accurately approximated by a Gaussian. Tlaa rwed
variance are given by the sum of the means and variances woidivédual Bernoulli variables:

ﬁ” Z Vit ik Var;[n; Z Yirge (L = Firjk) (16)
/751 /7&1
We further approximate the functidng(« + nw) using a second-order Taylor expansion about
E;n ”7] and evaluate its expectation under the Gaussian approgima

Varg(ng,)

Eqllog(a +ny7)] = log(a + Ey[n ﬁ”]) - m

(17)

BecauseE;[n W] > 0, the third derivative is small and the Taylor series appration is very
accurate. In fact we have found experimentally that thesSian approximation works very well



even when;.. is small. The reason is that we often haye;, being either close to 0 or 1 thus
the variance oh;,j? is small relative to its mean and the Gaussian approximatithtbe accurate.
Finally, plugging (17) into (15), we have our CVB updates:

Yigh (a+Ea[n;;f7]) (5+Eé[nfij]) (W5+Eq[n3f.j])il

_ Varg(ng)  Varg(ngd ) Varg (n7)
eXP( Mot Bgln, 01 20+ Egns3, 17 | 2WB+Eqln ;7)) (18)

Notice the striking correspondence between (18), (8) ahat®wing that CVB is indeed the mean
field version of collapsed Gibbs sampling. In particulag fist line in (18) is obtained from (8)
by replacing the fields.;’, n ;) ~andn ' by their means (thus the term mean field) while the

J,

exponentiated terms are correction factors accountinthovariance in the fields.

CVB with the Gaussian approximation is easily implemented lzas minimal computational costs.
By keeping track of the mean and variancengf., n.x, andn.,., and subtracting the mean and
variance of the corresponding Bernoulli variables whenexe require the terms with,;, z;; re-
moved, the computational cost scales onlyCdd<) for each update tg(z;;). Further, we only
need to maintain one copy of the variational posterior overatent variable for each unique docu-
ment/word pair, thus the overall computational cost peatten of CVB scales a®(M K') where
M is the total number of unique document/word pairs, whilerttenory requirement i® (M K).
This is the same as for VB. In comparison, collapsed Gibbgpiagineeds to keep track of the
current sample of;; for every word in the corpus, thus the memory requireme®(i&) while the
computational cost scales &N K) whereN is the total number of words in the corpus—higher
than for VB and CVB. Note however that the constant factooived in theO(N K) time cost of
collapsed Gibbs sampling is significantly smaller than ¢hios VB and CVB.

4 Experiments

We compared the three algorithms described in the paperdatd VB, CVB and collapsed Gibbs
sampling. We used two datasets: first is “KOS” (www.dailykasn), which has/ = 3430 docu-
ments, a vocabulary size & = 6909, a total of N = 467, 714 words in all the documents and on
averagel 36 words per document. Second is “NIPS” (books.nips.cc) witk 1675 documents, a
vocabulary size ofV = 12419, N = 2,166, 029 words in the corpus and on avera@®3 words per
document. In both datasets stop words and infrequent woeds removed. We split both datasets
into a training set and a test set by assignifigp of the words in each document to the test set. In
all our experiments we used= 0.1, 8 = 0.1, K = 8 number of topics for KOS an&” = 40 for
NIPS. We ran each algorithm on each dataset 50 times witerdiit random initializations.

Performance was measured in two ways. First using varigtioounds of the log marginal proba-
bilities on the training set, and secondly using log prolids on the test set. Expressions for the
variational bounds are given in (2) for VB and (12) for CVB.rfmth VB and CVB, test set log
probabilities are computed as:

test 7 7 5 a+ Eyngg] = B+ Eynaw
p(x'®) = E[Xk:@gkébkmtief‘ O = Kat E.n] Eqln;.] Prw = WBT Eolngl Eqns] (19)

Note that we used estimated mean value&;pfand¢y,, [11]. For collapsed Gibbs sampling, given
S samples from the posterior, we used:

S s
1 ke B +n?
A( _ S S s s -kw
px* =T]>_ Kl > O Opaes O = Katn Phew = WA+ ns, (20)
ik s=1 : k-

Figure 1 summarizes our results. We show both quantitiesitactibns of iterations and as his-
tograms of final values for all algorithms and datasets. C@Bverged faster and to significantly
better solutions than standard VB; this confirms our inbmithat CVB provides much better approx-
imations than VB. CVB also converged faster than collapsidb&sampling, but Gibbs sampling
attains a better solution in the end; this is reasonableesibbs sampling should be exact with
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Figure 1:Left: results for KOSRight: results for NIPSFirst row: per word variational bounds as functions
of numbers of iterations of VB and CVEsecond row: histograms of converged per word variational bounds
across random initializations for VB and CVBhird row: test set per word log probabilities as functions
of numbers of iterations for VB, CVB and Gibbd-ourth row: histograms of final test set per word log

probabilities across 50 random initializations.
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Figure 2:Left: test set per word log probabilitieRight: per word variational bounds. Both as functions of
the number of documents for KOS.

enough samples. We have also applied the exact but muchrsteveion of CVB without the Gaus-
sian approximation, and found that it gave identical restalthe one proposed here (not shown).

We have also studied the dependence of approximation atearan the number of documents in
the corpus. To conduct this experiment we train on 90% of theda/in a (growing) subset of the
corpus and test on the corresponding 10% left out words. imdi§igure 2 we show both variational
bounds and test set log probabilities as functions of thebmrmof documentd. We observe that as
expected the variational methods improve/dacreases. However, perhaps surprisingly, CVB does
not suffer as much as VB for small values .b6f even though one might expect that the Gaussian
approximation becomes dubious in that regime.

5 Discussion

We have described a collapsed variational Bayesian (CVEyemce algorithm for LDA. The al-
gorithm is easy to implement, computationally efficient amore accurate than standard VB. The
central insight of CVB is that instead of assuming paranseiebe independent from latent vari-
ables, we treat their dependence on the topic variablesénact fashion. Because the factorization
assumptions made by CVB are weaker than those made by VBgsh#ing approximation is more
accurate. Computational efficiency is achieved in CVB withaussian approximation, which was
found to be so accurate that there is never a need for exachatiom.

The idea of integrating out parameters before applyingatiarial inference has been indepen-
dently proposed by [12]. Unfortunately, because they wabiikethe context of general conjugate-
exponential families, the approach cannot be made gepe@ihputationally useful. Nevertheless,
we believe the insights of CVB can be applied to a wider cldsiserete graphical models beyond
LDA. Specific examples include various extensions of LDA13] hidden Markov models with dis-
crete outputs, and mixed-membership models with Dirictiistributed mixture coefficients [14].
These models all have the property that they consist of elisarandom variables with Dirichlet
priors on the parameters, which is the property allowingoussie the Gaussian approximation. We
are also exploring CVB on an even more general class of madelading mixtures of Gaussians,
Dirichlet processes, and hierarchical Dirichlet processe

Over the years a variety of inference algorithms have beepgsed based on a combination of
{maximize, sample, assume independent, marginalize apjlied to both parameters and latent
variables. We conclude by summarizing these algorithmsalielr'l, and note that CVB is located
in the marginalize out parameters and assume latent vasialoé independent cell.

A Exact Computation of Expectation Termsin (15)

We can compute the expectation terms in (15) exactly aswvislloConsiderE; [log(a+n;,j-?)],
%)

which requires computing}(njk,) (other expectation terms are similarly computed). Noté tha



Parameters- maximize sample assume marginalize
| Latent variables independent out
maximize Viterbi EM ? ME ME
sample stochastic EM| Gibbs sampling ? collapsed Gibbs
assume independeptariational EM ? VB CVvB
marginalize out EM any MCMC | EP for LDA intractable

Table 1:A variety of inference algorithms for graphical models. &¢tat not every cell is filled in (marked
by ?) while some are simply intractable. “ME” is the maxintiaa-expectation algorithm of [15] and “any
MCMC” means that we can use any MCMC sampler for the parameirce latent variables have been
marginalized out.

n;,jj = >4 1(z¢; =k) is a sum of independent Bernoulli variabls; ; = k) each with mean
parametefy; ;. Define vectors, j;, = [(1 — %/jk),%jk]T, and letv;, = vijr ® -+ @ vy, jx bE
the convolution of alh;i,jk._ _FinaIIy let v;,jj be v, deconvoly_ed by k- Then(j(n;kl? =m) will

be the(m+1)st entry inv;;”. The expectatiory[log(a+n,’)] can now be computed gxplicitly.
This exact implementation requires an impractt@:ﬁhf,,) time to computeE; [log(a+n;,j-?)]. At
the expense of complicating the algorithm implementatibis,can be improved by sparsifying the
vectorsy;;, (setting small entries to zero) as well as other computativitks. We propose instead
the Gaussian approximation of Section 3.1, which we havedda give extremely accurate results
but with minimal implementation complexity and computagabcost.
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